SIMPLE MOVING AVERAGE. Probleme mit dem einfachen gleitenden Durchschnitt als Prognosewerkzeug. Der gleitende Durchschnitt verfolgt die tatsächlichen Daten, aber es bleibt immer hinter ihm zurück. Der gleitende Durchschnitt wird niemals die Gipfel oder Täler der tatsächlichen Daten erreichen, die es glättet Data. Doesn t erzählen Sie sehr viel über die future. However, dies doesn t machen den gleitenden Durchschnitt nutzlos Sie müssen nur bewusst sein, seine Probleme. SLIDE BESCHREIBUNG. AUDIO TRANSCRIPTION. So zu fassen, für eine einfache gleitende Durchschnitt oder eine einzige Gleitender Durchschnitt, haben wir einige Probleme mit der Verwendung der einfachen gleitenden Durchschnitt als Prognose-Tool Der gleitende Durchschnitt ist die Verfolgung der tatsächlichen Daten, aber es ist immer hinterherd Der gleitende Durchschnitt wird nie erreichen die Gipfel oder Täler der tatsächlichen Daten, die es glättet Die Daten, und es ist wirklich nicht so viel von der Zukunft zu erzählen, weil es einfach eine Zeit im Voraus voraussagt, und diese Prognose wird angenommen, um den besten Wert für die zukünftige Periode zu repräsentieren, eine Periode in der Anzeige Vance, aber es doesn t erzählen Sie viel darüber hinaus Das doesn t machen die einfache gleitenden Durchschnitt nutzlos in der Tat sehen Sie einfache gleitende Durchschnitte. Klasse MovingAverageModel. Ein gleitendes durchschnittliches Prognosemodell basiert auf einer künstlich konstruierten Zeitreihe, in der der Wert für einen bestimmten Zeitraum durch den Mittelwert dieses Wertes und die Werte für eine Anzahl von vorangehenden und nachfolgenden Zeitperioden ersetzt wird. Wie Sie vielleicht erraten haben Aus der Beschreibung ist dieses Modell am besten für Zeitreihen-Daten geeignet, dh Daten, die sich über die Zeit ändern. Beispielsweise zeigen viele Charts einzelner Aktien an der Börse 20, 50, 100 oder 200 Tage bewegte Durchschnitte als Trends. Da der Prognosewert für einen bestimmten Zeitraum ein Durchschnitt der vorherigen Perioden ist, wird die Prognose immer wieder hinter den Erhöhungen oder Abnahmen der beobachteten abhängigen Werte zurückbleiben. Wenn beispielsweise eine Datenreihe einen bemerkenswerten Aufwärtstrend hat, dann einen gleitenden Durchschnitt Prognose wird in der Regel eine Unterschätzung der Werte der abhängigen Variablen. Die gleitende durchschnittliche Methode hat einen Vorteil gegenüber anderen Prognose-Modelle, dass es glättet Peaks und t Roughs oder Täler in einer Reihe von Beobachtungen Allerdings hat es auch mehrere Nachteile Insbesondere dieses Modell erzeugt keine eigentliche Gleichung. Daher ist es nicht so sinnvoll, dass es sich um ein mittelweites Vorhersageinstrument handelt. Es kann nur zuverlässig verwendet werden, um es zu prognostizieren Oder zwei Perioden in die Zukunft. Die gleitende durchschnittliche Modell ist ein Spezialfall der allgemeineren gewichteten gleitenden Durchschnitt Im einfachen gleitenden Durchschnitt sind alle Gewichte gleich. Seit 0 3 Autor Steven R Gould. Fields von class. MovingAverageModel geerbt Constructs ein neues Gleitende durchschnittliche Prognosemodelle. MovingAverageModel int Periode Konstruiert ein neues gleitendes durchschnittliches Prognosemodell mit dem angegebenen Zeitraum. getForecastType Gibt einen oder zwei Wortnamen dieser Art von Prognose model. init DataSet dataSet Dient zur Initialisierung der gleitenden durchschnittlichen model. toString Dies sollte Überschrieben werden, um eine textuelle Beschreibung des aktuellen Prognosemodells zur Verfügung zu stellen, einschließlich, wo möglich, alle abgeleiteten Parameter verwendet. Methoden vererbt von Class. Constructs ein neues gleitendes durchschnittliches Prognosemodell Für ein gültiges Modell, das konstruiert werden soll, solltest du init anrufen und einen Datensatz mit einer Reihe von Datenpunkten mit der Zeitvariablen initialisieren, die initialisiert wurde, um die unabhängige Variable zu identifizieren. Konstruiert eine neue gleitende durchschnittliche Prognose Modell, mit dem vorgegebenen Namen als unabhängige Variable. Parameter independentVariable - der Name der unabhängigen Variable in diesem Modell zu verwenden. Konstruiert ein neues gleitende durchschnittliche Prognose-Modell, mit dem angegebenen Zeitraum Für ein gültiges Modell zu konstruieren, sollten Sie init aufrufen Und übergibt einen Datensatz, der eine Reihe von Datenpunkten enthält, wobei die Zeitvariable initialisiert ist, um die unabhängige Variable zu identifizieren. Der Periodenwert wird verwendet, um die Anzahl der Beobachtungen zu bestimmen, die verwendet werden sollen, um den gleitenden Durchschnitt zu berechnen. Zum Beispiel für einen 50-Tage-Tag Gleitender Durchschnitt, wo die Datenpunkte tägliche Beobachtungen sind, dann sollte die Periode auf 50 gesetzt werden. Die Periode wird auch verwendet, um die Menge der zukünftigen Perioden zu bestimmen Hut kann effektiv prognostiziert werden Mit einem 50 Tage gleitenden Durchschnitt, dann können wir nicht vernünftigerweise - mit jedem Grad der Genauigkeit - prognostizieren mehr als 50 Tage über die letzte Periode, für die Daten verfügbar ist Dies kann vorteilhafter sein als, sagen wir eine 10-Tage-Zeitraum, Wo wir nur 10 Tage jenseits der letzten Periode prognostizieren konnten. Parameter Zeitraum - die Anzahl der Beobachtungen, die verwendet werden, um den gleitenden Durchschnitt zu berechnen. Konstruiert ein neues gleitendes durchschnittliches Prognosemodell, wobei der Vorname als die unabhängige Variable und die angegebene Periode verwendet wird. Parameter unabhängigVariable - der Name der unabhängigen Variablen, die in diesem Modell verwendet werden soll - die Anzahl der Beobachtungen, die verwendet werden, um den gleitenden Durchschnitt zu berechnen. Zur Initialisierung des gleitenden Durchschnittsmodells Diese Methode muss vor jeder anderen Methode in der Klasse aufgerufen werden Das gleitende Durchschnittsmodell legt keine Gleichung für die Prognose ab, diese Methode verwendet das eingegebene DataSet, um Prognosewerte für alle gültigen Werte des unabhängigen ti zu berechnen Ich variabel. Specified by init in der Schnittstelle PrognoseModell Overrides init in der Klasse AbstractTimeBasedModel Parameter dataSet - ein Datensatz von Beobachtungen, die verwendet werden können, um die Prognoseparameter des Prognosemodells zu initialisieren. Returns ein oder zwei Wortnamen dieser Art von Prognosemodell Keep Diese kurze Eine längere Beschreibung sollte in der toString-Methode implementiert werden. Dies sollte überschrieben werden, um eine textuelle Beschreibung des aktuellen Prognosemodells zur Verfügung zu stellen, einschließlich, soweit möglich, alle abgeleiteten Parameter verwendet. Spezifiziert durch toString in der Schnittstelle PrognoseModel Overrides toString in der Klasse WeightedMovingAverageModel Gibt ein String-Darstellung des aktuellen Prognosemodells und seiner Parameter. Moving durchschnittliche und exponentielle Glättung Modelle. Als ein erster Schritt in Bewegung über mittlere Modelle, zufällige Walk-Modelle und lineare Trend-Modelle, Nicht-Sektion Muster und Trends können mit einem gleitenden Durchschnitt extrapoliert werden Oder Glättungsmodell Die Grundannahme hinter Mittelwert und Smoo Ding-Modelle ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten lokalen Durchschnitt, um den aktuellen Wert des Mittelwertes zu schätzen und dann das als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss betrachtet werden Das mittlere Modell und das random-walk-without-drift-Modell Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als geglättete Version der Originalreihe bezeichnet, weil die kurzfristige Mittelung die Wirkung der Glättung hat Out die Beulen in der ursprünglichen Serie Durch die Anpassung der Grad der Glättung der Breite des gleitenden Durchschnitt, können wir hoffen, eine Art von optimalen Gleichgewicht zwischen der Leistung der mittleren und zufälligen Walk-Modelle Die einfachste Art von Mittelung Modell ist die. Simple Gleichwertig bewegter Durchschnitt. Die Prognose für den Wert von Y zum Zeitpunkt t 1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Durchschnitt der letzten m Beobachtungen. Hier und anderswo verwende ich das Symbol Y-Hut, um für eine Prognose der Zeitreihe Y zu stehen, die am frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde. Dieser Durchschnitt ist in der Periode & lgr; m 1 2 zentriert, was bedeutet, dass die Schätzung von Das lokale Mittel neigt dazu, hinter dem wahren Wert des lokalen Mittels um etwa m 1 2 Perioden zu liegen. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt m 1 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen. Zum Beispiel, wenn Sie die letzten 5 Werte mittelschätzen, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte sein. Beachten Sie, dass wenn m 1, Das einfache gleitende durchschnittliche SMA-Modell entspricht dem zufälligen Walk-Modell ohne Wachstum Wenn m sehr groß ist, vergleichbar mit der Länge der Schätzperiode ist das SMA-Modell gleichbedeutend mit dem mittleren Modell Wie bei jedem Parameter eines Prognosemodells ist es üblich Um den Wert von ki anzupassen Um die bestmögliche Anpassung an die Daten zu erhalten, dh die kleinsten Prognosefehler im Durchschnitt. Hierbei handelt es sich um ein Beispiel für eine Serie, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst wollen wir versuchen, es mit einem zufälligen Spaziergang zu platzieren Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Term. Die zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von dem Rauschen in den Daten die zufälligen Schwankungen sowie das Signal der lokalen Bedeutet, wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Terminen ausprobieren, bekommen wir einen glatteren Prognosen. Der 5-fach einfache gleitende Durchschnitt liefert deutlich kleinere Fehler als das zufällige Spaziergang Modell in diesem Fall Das Durchschnittsalter der Daten in diesem Prognose ist 3 5 1 2, so dass es dazu neigt, hinter Wendepunkte um etwa drei Perioden zurückzukehren. Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später. Nicht, Term Prognosen aus dem SMA Mod El sind eine horizontale gerade Linie, genauso wie im zufälligen Spaziergangmodell So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Allerdings sind die Prognosen aus dem zufälligen Walk-Modell einfach gleich dem letzten beobachteten Wert, die Prognosen von Das SMA-Modell ist gleich einem gewichteten Durchschnitt der jüngsten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Konfidenzgrenzen werden nicht größer, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht korrekt. Leider gibt es keinen zugrunde liegenden Statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Zum Beispiel könnten Sie eine Tabellenkalkulation erstellen, in der das SMA-Modell steht Würde zur Vorhersage von 2 Schritten voraus, 3 Stufen voraus, etc. innerhalb der historischen Daten Probe Sie konnten dann die Probe Standardabweichungen der Fehler bei jeder Prognose h Orizon, und konstruieren dann Konfidenzintervalle für längerfristige Prognosen durch Hinzufügen und Subtrahieren von Vielfachen der entsprechenden Standardabweichung. Wenn wir einen 9-fach einfach gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt. Das Durchschnittsalter ist Jetzt 5 Perioden 9 1 2 Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10.Notice, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welche Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, auch einen 3-Term-Durchschnitt. Model C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um eine kleine Marge über die 3-Term - und 9-Term-Mittelwerte und Ihre anderen stats sind fast identisch Also, bei Modellen mit sehr ähnlichen Fehlerstatistiken können wir wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen. Zurück zum Seitenanfang. Brown s Simple Exponential Glättung exponentiell gewichtet Gleitender Durchschnitt. Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen vollständig ignoriert. Intuitiv sollten die vergangenen Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel die jüngste Beobachtung sollte Bekomme ein bisschen mehr Gewicht als die 2. jüngsten, und die 2. jüngsten sollte ein bisschen mehr Gewicht als die 3. letzte, und so weiter Die einfache exponentielle Glättung SES Modell erreicht dies. Let bezeichnen eine Glättung Konstante eine Zahl zwischen 0 und 1 Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die die aktuelle Ebene repräsentiert, dh der mittlere Mittelwert der Reihe, wie sie von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv aus seinem eigenen vorherigen Wert wie dieser berechnet. Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wo die Nähe des interpolierten Wertes auf die meisten re Cent Beobachtung Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert. Egalentlich können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und vorherige Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation Zwischen vorheriger Prognose und vorheriger Beobachtung. In der zweiten Version wird die nächste Prognose durch Anpassung der vorherigen Prognose in Richtung des vorherigen Fehlers um einen Bruchteil erreicht. Ist der Fehler zum Zeitpunkt t In der dritten Version ist die Prognose ein Exponentiell gewichtet, dh ermäßigt gleitender Durchschnitt mit Rabattfaktor 1.Die Interpolationsversion der Prognoseformel ist die einfachste zu verwenden, wenn Sie das Modell auf einer Tabellenkalkulation implementieren, die es in eine einzelne Zelle passt und enthält Zellreferenzen, die auf die vorherige Prognose hinweisen, die vorherige Beobachtung und die Zelle, wo der Wert von gespeichert ist. Hinweis, dass, wenn 1, ist das SES-Modell gleichbedeutend mit einem zufälligen Spaziergang Modell Witz Hout-Wachstum Wenn 0, ist das SES-Modell äquivalent zum mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem mittleren Return to top of page gesetzt ist. Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose ist 1 relativ Zu dem Zeitraum, für den die Prognose berechnet wird. Dies soll nicht offensichtlich sein, aber es kann leicht durch die Auswertung einer unendlichen Reihe gezeigt werden. Daher ist die einfache gleitende Durchschnittsprognose dazu neigt, hinter den Wendepunkten um etwa 1 Perioden zurückzukehren 5 die Verzögerung ist 2 Perioden, wenn 0 2 die Verzögerung 5 Perioden beträgt, wenn 0 1 die Verzögerung 10 Perioden ist, und so weiter. Für ein gegebenes Durchschnittsalter dh Betrag der Verzögerung, ist die einfache exponentielle Glättung SES Prognose etwas überlegen, die einfache Bewegung Durchschnittliche SMA-Prognose, weil sie relativ viel Gewicht auf die jüngste Beobachtung - es ist etwas mehr reagiert auf Veränderungen in der jüngsten Vergangenheit Zum Beispiel ein SMA-Modell mit 9 Begriffe und ein SES-Modell mit 0 2 haben beide ein Durchschnittsalter Von 5 für die da Ta in ihren Prognosen, aber das SES-Modell setzt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und zugleich vergisst es nicht ganz über Werte, die mehr als 9 Perioden alt sind, wie in dieser Tabelle gezeigt. Ein anderer wichtiger Vorteil von Das SES-Modell über das SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er leicht mit einem Solver-Algorithmus optimiert werden kann, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert des SES-Modells für diese Serie erweist sich Um 0 2961 zu sein, wie hier gezeigt. Das Durchschnittsalter der Daten in dieser Prognose beträgt 1 0 2961 3 4 Perioden, was ähnlich ist wie bei einem 6-fach einfach gleitenden Durchschnitt. Die langfristigen Prognosen aus dem SES-Modell sind Eine horizontale Gerade wie im SMA-Modell und das zufällige Spaziergang Modell ohne Wachstum Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für den Rand Om walk model Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das zufällige Walk-Modell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells, so dass die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für die SES-Modell Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht-seasonalen Differenz, einem MA 1-Term und keinem konstanten Term, der sonst als ARIMA-0,1,1-Modell ohne Konstante bekannt ist. Der MA 1 - Koeffizient im ARIMA-Modell entspricht dem Menge 1 im SES-Modell Wenn Sie beispielsweise ein ARIMA-0,1,1-Modell ohne Konstante an die hier analysierte Baureihe anpassen, erweist sich der geschätzte MA 1 - Koeffizient auf 0 7029, was fast genau ein minus 0 2961 ist. Es ist möglich, die Annahme eines nicht-null konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu geben Sie einfach ein ARIMA-Modell mit einer nicht-seasonalen Differenz und einem MA 1-Term mit einer Konstante, dh einem ARIMA 0,1,1-Modell an Mit konstanten Die langfristigen prognosen werden Dann haben Sie einen Trend, der gleich der durchschnittlichen Tendenz ist, die über die gesamte Schätzperiode beobachtet wird. Sie können dies nicht in Verbindung mit saisonaler Anpassung tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA eingestellt ist. Allerdings können Sie eine konstante Länge hinzufügen - Exponentieller Trend zu einem einfachen exponentiellen Glättungsmodell mit oder ohne saisonale Anpassung durch Verwendung der Inflationsanpassungsoption im Prognoseverfahren Die entsprechende Inflationsrate pro Wachstumsrate pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell, das an die Daten angepasst ist, geschätzt werden Konjunktion mit einer natürlichen Logarithmus-Transformation, oder sie kann auf anderen, unabhängigen Informationen über langfristige Wachstumsaussichten basieren. Zurück zum Seitenanfang. Brown s Linear ie doppelte exponentielle Glättung. Die SMA-Modelle und SES-Modelle gehen davon aus, dass es keinen Trend gibt Jede Art in den Daten, die in der Regel ok oder zumindest nicht zu schlecht für 1-Schritt-voraus Prognosen, wenn die Daten relativ noi ist Sy, und sie können modifiziert werden, um einen konstanten linearen Trend wie oben gezeigt zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen den Lärm auszeichnet und wenn es nötig ist Prognose mehr als 1 Periode voraus, dann könnte die Schätzung eines lokalen Trends auch ein Problem sein Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungs-LES-Modell zu erhalten, das lokale Schätzungen von Level und Trend berechnet. Der einfachste zeitveränderliche Trend Modell ist Brown s lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren Eine ausgefeiltere Version dieses Modells, Holt s, ist Unten diskutiert. Die algebraische Form von Brown s linearen exponentiellen Glättungsmodell, wie das des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von verschiedenen, aber e ausgedrückt werden Quivalentformen Die Standardform dieses Modells wird gewöhnlich wie folgt ausgedrückt: S bezeichnet die einfach geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung auf die Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch. Erinnern Sie sich, dass unter einfacher exponentieller Glättung dies die Prognose für Y in der Periode t 1 sein würde. Dann sei S die doppelt geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung unter Verwendung derselben zu der Reihe S erhalten wird. Zunächst ist die Prognose für Y tk für irgendwelche K & sub1 ;, ist gegeben durch. Dies ergibt e 1 0, dh ein wenig zu betrügen, und die erste Prognose gleich der tatsächlichen ersten Beobachtung und e 2 Y 2 Y 1, wonach Prognosen unter Verwendung der obigen Gleichung erzeugt werden, ergibt die gleichen angepassten Werte Als die auf S und S basierende Formel, wenn diese mit S 1 S 1 Y 1 gestartet wurden Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt s Linear Exponential Smoothing. Brown S LES-Modell berechnet lokale Schätzungen von Level und Trend durch Glättung der jüngsten Daten, aber die Tatsache, dass es tut dies mit einem einzigen Glättungsparameter stellt eine Einschränkung auf die Datenmuster, dass es in der Lage ist, die Ebene und Trend sind nicht erlaubt, variieren beim Unabhängige Raten Holt s LES Modell adressiert dieses Problem durch die Einbeziehung von zwei Glättungskonstanten, eine für die Ebene und eine für den Trend Zu jeder Zeit t, wie in Browns Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T T des lokalen Tendenzes Hier werden sie rekursiv aus dem Wert von Y, der zum Zeitpunkt t beobachtet wurde, und den vorherigen Schätzungen des Niveaus und des Tendenzes durch zwei Gleichungen berechnet, die eine exponentielle Glättung für sie separat anwenden. Wenn das geschätzte Niveau und der Trend zum Zeitpunkt t-1 Sind L t 1 bzw. T t-1, so ist die Prognose für Y t, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der Istwert beobachtet wird, wird die aktualisierte Schätzung der Level wird rekursiv durch Interpolation zwischen Y t und seiner Prognose L t-1 T t-1 berechnet, wobei Gewichte von und 1 verwendet werden. Die Änderung des geschätzten Pegels, nämlich L t L t 1, kann als eine verrauschte Messung der Trend zur Zeit t Die aktualisierte Schätzung des Trends wird dann rekursiv durch Interpolation zwischen L berechnet T L t 1 und die vorherige Schätzung des Trends T t-1 unter Verwendung von Gewichten von und 1.Die Interpretation der Trend-Glättungskonstante ist analog zu der der Pegel-Glättungs-Konstante. Modelle mit kleinen Werten gehen davon aus, dass sich der Trend ändert Nur sehr langsam im Laufe der Zeit, während Modelle mit größeren davon ausgehen, dass es sich schneller ändert Ein Modell mit einem großen glaubt, dass die ferne Zukunft sehr unsicher ist, denn Fehler in der Trendschätzung werden bei der Prognose von mehr als einer Periode voraus Der Seite. Die Glättungskonstanten und können in der üblichen Weise durch Minimierung des mittleren quadratischen Fehlers der 1-Schritt-voraus-Prognosen geschätzt werden. Wenn dies in Statgraphics geschieht, ergeben sich die Schätzungen als 0 3048 und 0 008 Der sehr kleine Wert von Bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten einnimmt, so dass dieses Modell grundsätzlich versucht, einen langfristigen Trend abzuschätzen. Analog zu dem Begriff des Durchschnittsalters der Daten, die bei der Schätzung von t verwendet werden Die lokale Ebene der Serie, das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet wird, ist proportional zu 1, wenn auch nicht genau gleich. In diesem Fall ergibt sich das 1 0 006 125 Dies ist eine sehr genaue Nummer Insofern als die Genauigkeit der Schätzung von isn t wirklich 3 Dezimalstellen, aber es ist von der gleichen allgemeinen Größenordnung wie die Stichprobengröße von 100, so dass dieses Modell durchschnittlich über ziemlich viel Geschichte bei der Schätzung der Trend Die Prognose Handlung ist Unten zeigt, dass das LES-Modell einen eher größeren lokalen Trend am Ende der Serie schätzt als der im SES-Trendmodell geschätzte konstante Trend. Auch der Schätzwert ist nahezu identisch mit dem, der durch die Anpassung des SES-Modells mit oder ohne Trend erhalten wird , So ist dies fast das gleiche model. Now, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll einen lokalen Trend schätzen Wenn Sie Augapfel dieser Handlung, sieht es aus, als ob die lokale Tendenz hat sich nach unten am Ende der Serie Wh At ist passiert Die Parameter dieses Modells wurden durch die Minimierung der quadratischen Fehler von 1-Schritt-voraus Prognosen, nicht längerfristige Prognosen geschätzt, in welchem Fall der Trend macht nicht viel Unterschied Wenn alles, was Sie suchen, sind 1 - step-ahead-Fehler, sehen Sie nicht das größere Bild der Trends über 10 oder 20 Perioden Um dieses Modell mehr im Einklang mit unserer Augapfel-Extrapolation der Daten zu bekommen, können wir manuell die Trend-Glättung konstant so einstellen, dass es Verwendet eine kürzere Grundlinie für Trendschätzung Wenn wir z. B. wählen, um 0 1 zu setzen, dann ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so vermitteln Hier ist das, was die Prognose-Plot aussieht, wenn wir 0 1 setzen, während wir 0 3 halten. Das sieht intuitiv vernünftig für diese Serie aus, obwohl es wahrscheinlich gefährlich ist, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was geht es um die Fehlerstatistik Hier ist Ein Modellvergleich f Oder die beiden oben gezeigten Modelle sowie drei SES-Modelle Der optimale Wert des SES-Modells beträgt etwa 0 3, aber mit 0 oder 0 2 ergeben sich ähnliche Ergebnisse mit etwas mehr oder weniger Ansprechverhalten. Eine Holt s lineare Exp-Glättung Mit alpha 0 3048 und beta 0 008. B Holt s lineare exp Glättung mit alpha 0 3 und beta 0 1. C Einfache exponentielle Glättung mit alpha 0 5. D Einfache exponentielle Glättung mit alpha 0 3. E Einfache exponentielle Glättung mit alpha 0 2.Die Statistiken sind fast identisch, so dass wir wirklich die Wahl auf der Basis von 1-Schritt-voraus Prognose Fehler innerhalb der Daten Probe Wir müssen auf andere Überlegungen zurückfallen Wenn wir stark glauben, dass es sinnvoll ist, die aktuelle Basis zu stützen Trend-Schätzung, was in den letzten 20 Perioden passiert ist, so können wir einen Fall für das LES-Modell mit 0 3 und 0 1 machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle Sei leichter zu erklären und würde auch mehr middl geben E-of-the-road Prognosen für die nächsten 5 oder 10 Perioden Zurück zum Seitenanfang. Welche Art der Trend-Extrapolation ist am besten horizontal oder linear Empirische Hinweise deuten darauf hin, dass, wenn die Daten bereits angepasst wurden, wenn nötig für die Inflation, dann Es kann unklug sein, kurzfristige lineare Trends sehr weit in die Zukunft zu extrapolieren Trends, die heute deutlich sichtbar sind, können aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und zyklische Abschwünge oder Aufschwünge in einer Branche aus diesem Grund einfacher exponentieller Fall sein Glättung führt oft zu einem besseren Out-of-Sample, als es sonst zu erwarten wäre, trotz seiner naiven horizontalen Trend-Extrapolation Dämpfte Trendmodifikationen des linearen exponentiellen Glättungsmodells werden auch in der Praxis häufig verwendet, um eine Note des Konservatismus in seine Trendprojektionen einzuführen. Der gedämpfte Trend LES-Modell kann als Spezialfall eines ARIMA-Modells implementiert werden, insbesondere ein ARIMA 1,1,2-Modell. Es ist möglich, Konfidenzintervalle zu berechnen Langfristige Prognosen, die durch exponentielle Glättungsmodelle erzeugt werden, indem sie sie als Sonderfälle von ARIMA-Modellen betrachten. Vorsicht nicht, dass alle Software die Konfidenzintervalle für diese Modelle korrekt berechnet. Die Breite der Konfidenzintervalle hängt von dem RMS-Fehler des Modells ab Von Glättung einfach oder linear iii der Wert s der Glättungskonstante s und iv die Anzahl der vorangegangenen Perioden, die Sie prognostizieren Im Allgemeinen breiten sich die Intervalle schneller aus, wenn sie im SES-Modell größer werden und sie breiten sich viel schneller aus, wenn linear und nicht einfach Glättung wird verwendet Dieses Thema wird im ARIMA-Modell-Abschnitt der Notizen weiter unten diskutiert. Zurück zum Seitenanfang.
No comments:
Post a Comment